Germplasm Architecture Revealed through Chromosomal Effects for Quantitative Traits in Maize.

نویسندگان

  • Rex Bernardo
  • Addie M Thompson
چکیده

Germplasm architecture refers to how favorable alleles for a given trait are distributed across the genome in a germplasm collection. Our objective was to assess germplasm architecture for quantitative traits among US maize ( L.) inbreds. A total of 271 inbreds were genotyped at 28,626 single nucleotide polymorphism (SNP) loci and phenotyped for anthesis date, plant height, starch and protein concentration, and resistance to northern corn leaf blight (NCLB, caused by ). Chromosomal effects were calculated as the sum of the trait effects of SNP alleles carried on a specific chromosome by an inbred. The chromosomal effects were further decomposed into the mean effects of chromosomes, mean effects of inbreds, and chromosome × inbred effects. On average, none of the 10 maize chromosomes was particularly rich or poor in favorable quantitative trait locus (QTL) alleles. However, extreme values of chromosome × inbred effects often involved chromosomes 5 and 8 for anthesis date, chromosomes 1 and 5 for plant height, and chromosome 9 for protein concentration. Inbreds with one or two chromosomes deficient in favorable alleles were candidates for improvement via chromosome-substitution lines. Specific chromosomes for which each of five genetic backgrounds (B73, Mo17, Oh43, A321, and PH207) were rich or poor for unknown favorable alleles were also identified. Chromosomal effects varied widely even when prior association mapping in the same germplasm collection had failed to identify any QTL. Genomewide marker effects, particularly when partitioned into chromosomal effects, provide a simple way to dissect germplasm architecture for quantitative traits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny

MAIZE EAR FASCIATION Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. MATERIAL AND METHODS Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 ...

متن کامل

teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance.

Two quantitative trait loci (QTL) controlling differences in plant and inflorescence architecture between maize and its progenitor (teosinte) were analyzed. Complementation tests indicate that one of these, which is on chromosome arm 1L, is the locus for the maize mutant teosinte branched1 (tb1). This QTL has effects on inflorescence sex and the number and length of internodes in the lateral br...

متن کامل

Computer Simulation to Guide Choice of Breeding Strategies for Marker-aided Multiple Trait Integration in Maize By

With the rapid rate of adoption by farmers worldwide of crop varieties containing multiple value-added traits, mainly genetically modified traits, as many as 15 to 20 transgenic events may be offered in new maize hybrids by 2030 (Que et al. 2010; Fraley 2012). Multiple Trait Integration (MTI) is designed to integrate the specific transgenic events conferring the value-added trait phenotypes int...

متن کامل

The Genetic Architecture of Maize (Zea mays L.) Kernel Weight Determination

Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. T...

متن کامل

Combining Ability among Twenty Insect Resistant Maize inbred lines Resistant to Chilo partellus and Busseola fusca Stem borers

A partial diallel design was used among 20 maize inbred lines to form 110 F1 hybrids to generate information on the values of these lines for developing insect resistant maize varieties during the short rains season of 2006. The hybrids were evaluated for resistance to the C. partellus and B. fusca, and for agronomic performance over two seasons during long and short rains of 2007 at a mid-alti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The plant genome

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2016